
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1338
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Genetic Algorithm for Task Scheduling in
Heterogeneous Distributed Computing System

Azita Jooyayeshendi, Abbas Akkasi

Abstract—Load balancing problem on Heterogeneous Distributed Computing System (HDCs) deals with allocation of tasks to
computing nodes, so that computing nodes are evenly loaded. Due the complexity of dynamic load balancing problem majority of
researchers uses heuristic algorithm to obtain near optimal solutions.We have used consistent ETC (Expected Time to Compute) matrix in
to study the performance of Genetic algorithm to minimize the makespan
Genetic algorithm has been developed to dynamically schedule heterogeneous tasks on heterogeneous processors in a distributed system.
The scheduler operates in an environment with dynamically changing resources and adapts to variable system resources. It operates in a
batch fashion and utilises a genetic algorithm to minimise the total execution time and compare with simulated annealing (SA) algorithm.

Keywords—Dynamic load balancing, Genetic algorithm, heterogeneous distributed system, makespan.

—————————— ——————————

1 INTRODUCTION

istributed heterogeneous computing is being
widely applied to a variety of large size
computational problems. These computational

environments are consists of multiple heterogeneous
computing modules, these modules interact with each
other to solve the problem. In a Heterogeneous
distributed computing system (HDCS), processing
loads arrive from many users at random time instants.
A proper scheduling policy attempts to assign these
loads to available computing nodes so as to complete
the processing of all loads in the shortest possible time.
There are number of techniques and methodologies for
scheduling processes of a distributed system. These are
task assignment, load-balancing, load-sharing
approaches. Due to heterogeneity of computing nodes,
jobs encounter different execution times on different
processors. [4]

In task assignment approach, each process
submitted by a user for processing is viewed as a
collection of related tasks and these tasks are scheduled
to suitable nodes so as to improve performance. In load
sharing approach simply attempts to conserve the
ability of the system to perform work by assuring that
no node is idle while processes wait for being
processed. In load balancing approach, processes
submitted by the users are distributed among the
nodes of the system so as to equalize the workload
among the nodes at any point of time. Several methods
have been proposed to solve

scheduling problem in DCS. The proposed methods

can be generally classified into three categories: Graph-
theory-based approaches, mathematical models-based
methods and heuristic Techniques .

Heuristics can obtain suboptimal solution in
ordinary situations and optimal solution in particulars.
Since the scheduling problem has been known to be
NP-complete, using heuristic Techniques can solve this
problem more efficiently. Three most well-known
heuristics are the iterative improvement algorithms
[7],the probabilistic optimization algorithms, and the
constructive heuristics. In the probabilistic
optimization group, GA-based methods and simulated
annealing are considerable which extensively have
been proposed in the literature.

One of the crucial aspects of the scheduling problem
is load balancing. While recently created processes
randomly arrive into the system, some processors may
be overloaded heavily while the others are under-
loaded or idle. The main objectives of load balancing
are to spread load on processors equally, maximizing
processors utilization and minimizing total execution
time.

In dynamic load balancing, processes must be
dynamically allocated to processors in arrival time and
obtain a near optimal schedule, therefore the execution
of the dynamic load balancing algorithm should not
take long to arrive at a decision to make rapid task
assignments have proposed scheduling algorithms
considering load balancing .[4]

In Section II we review related work and give an

overview of how a GA operates. In Section III we
describe our scheduling algorithm. In Section IV we
present the results of our performance experiments. In
Section V we give our conclusions and suggest future
directions for our work .

2 RELATED WORKS

D

————————————————
• Azita Jooyayeshendi, Islamic Azad University Bandar Abbas Branch, Iran.

E-mail: Azita.Jooya1@gmail.com
• Abbas Akkasi, Computer Engineering Department of Islamic Azad

University Science and Research Branch, Tehran, Iran.
E-mail: Abbas.Akkasi@gmail.com

IJSER

http://www.ijser.org/
mailto:Azita.Jooya1@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1339
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Load balancing for distributed computing system is
a problem that has been deeply studied for a long time.
Different heuristic algorithms are used by researcher to
find suboptimal solutions for homogeneous and
heterogeneous distributed system. Dandamudi
addressed dynamic load sharing in distributed systems
and established that load sharing improves
performance by moving work from heavily loaded
nodes to lightly loaded nodes. A general model for
heterogeneous distributed/parallel computer system
proposed by Li and Kameda [1] and used to formulate
the multiclass job load balancing problem as a
nonlinear optimization problem. An algorithmic
approach to load balancing problem is presented in
[10]. Different form of linear programming formulation
of the load balancing problem has been discussed
along with greedy, randomized and approximation
algorithm to produce sub-optimal solutions to the
problem. The solution to this intractable problem was
discussed under different algorithm paradigm.
Modeling of optimal load balancing strategy using
queuing theory was proposed by Francois Spies (1996).
This is one of the pioneer works reported in the
literature that presents an analytical model of dynamic
load balancing techniques as M/M/k queue and
simulate with fundamental parameters like load,
number of nodes, transfer speed and overload rate.
Most appropriate queuing model for homogeneous
distributed system can be M/M/m/n, has been
analyzed in [1].

Queuing-Theoretic models for parallel and
distributed system can be found in [6]. General Job
scheduling problem of n tasks with m machines, is
presented as an optimization problem in to minimize
the makespan. Jong-Chen Chen and et al. investigated
the contribution made by evolutionary learning on
dynamic load balancing problems in distributed
computing system. Bora Ucar and et al. have
considered the assignment of communicating tasks to
heterogeneous processors, that uses a task clustering
method based upon execution time to allocate the task
though the heuristic techniques.

A classification of iterative dynamic load balancing
technique is discussed in . SA is a heuristic method that
has been implemented to obtain good solutions of an
objective function defined on a number of discrete
optimization problems. Simulated Annealing (SA),
proposed by Kirkpatrick et al, has been used as a
popular heuristic to solve several optimization
problems to obtain sub-optimal solution.

A heuristic algorithm based on simulated annealing
is discussed , which guarantees good load balancing on
grid environment. A comparative study of the three
algorithms (Hill-climbing, simulated annealing and
genetic algorithms) is then carried out in considering
performance criteria as the amount of search time.

Makespan minimization of scheduling problem on
identical parallel machines using simulated annealing
has been presented by Lee and et al. in

Grid Computing is one of heterogeneous distributed
computing system geographically dispersed among
several entities. Fidanova used simulated annealing to
obtain near optimal solutions for scheduling problem
in large grid . Researchers have examined, different
heuristics(Opportunistic Load Balancing, Minimum
Execution Time, Minimum Completion Time, Min–
min, Max–min, Duplex, Genetic Algorithm, Simulated
Annealing, Genetic Simulated Annealing, Tabu, and
A*) on Mixed-machine heterogeneous computing (HC)
environments to minimize the total execution time of
the metatask.

 Rahmani and Rezvani presented a genetic
algorithm for static scheduling, which is again
improved by simulated annealing to obtain an
improvised solution. They have also established that
running time depends on the number of task. Several
researchers used SA and GA for load balancing on
distributed computing system; however majority of the
papers have no specific representation for Genetic
algorithms for load balancing.[1]

3 HETEROGENEOUS DISTRIBUTED
COMPUTING SYSTEM MODEL
3.1 HETEROGENEOUS DISTRIBUTED COMPUTING SYSTEM

Heterogeneous distributed computing system
(HDCS) utilizes a distributed suite of different high-
performance nodes, interconnected with high-speed
links, to perform different computationally intensive
applications that have diverse computational
requirements [11,12]. Distributed computing provides
the capability for the utilization of remote computing
resources and allows for increased levels of flexibility,
reliability, and modularity. In heterogeneous
distributed computing system the computational
power of the computing entities are possibly different
for each processor as shown in figure1 [10].

 A large heterogeneous distributed computing
system (HDCS) consists of potentially millions of
heterogeneous computing nodes connected by the
global Internet. The applicability and strength of HDCS
are derived from their ability to meet computing needs
to appropriate resources [11].

Heterogeneity in DCS can be expressed by
considering three systems attributes (i) Processor with
computing node, (ii) memory, and (iii) networking .
The metrics used to quantify the processor or node
processing power by means of processing speed and
represented with FLOPS (Floating point Operations per
Second) and can be measured through LINPACK.
Memory attributes are measured as the available
memory capacity to support the process. The

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1340
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

networking attributes are the link capacity associated
with transmission medium, propagation delay and
available communication resources [1].

Fig.1. Heterogeneous Distributed Computing System with central
Scheduler

In paper we have carried out simulation only
considering processing power of the node, which can
be represented as Markovian service time distribution
[1]. In general, load-balancing algorithms can be
broadly categorized as centralized or decentralized,
dynamic or static, periodic or non-periodic, and those
with thresholds or without thresholds. We have used a
centralized load-balancing algorithm framework as it
imposes fewer overheads on the system than the
decentralized algorithm .Centralized load balancing
algorithms requires the global information on
computing nodes at a single location and the load
balancing policy is initiated from the central location.
Heterogeneity of architecture and configuration
complicates the load balancing problem [11].

Heterogeneity can arise due to the difference in task
arrival rate at homogeneous processors or processors
having different task processing rates. We have
assumed that all computational tasks are capable of
executed on any computing nodes of DCS. A single
computing node that acts as a central scheduler or
resource manager of the DCS collects the global load
information of other computing nodes.

Resource management sub systems of the HDCS are
designated to schedule the execution of the tasks
dynamically as that arrives for the service. HDCS
environments are well suited to meet the
computational demands of large, diverse groups of
tasks. The problem of optimally mapping also defined
as matching and scheduling. A basic assumption is that
all computing nodes are always available for
processing[1].

3.2 LOAD BALANCING PROBLEM IN HETEROGENEOUS
DISTRIBUTEDCOMPUTING SYSTEM

We have used the characterization model proposed
by Shoukat Ali and et al as the basic framework to
study the impact of system heterogeneity against
different heuristic resource allocation algorithms [1].
We consider a heterogeneous distributed computing
system (HDCS) consists of a set of M = {M1, M2, …
Mm}, m independent heterogeneous, uniquely
addressable computing entity (computing nodes). Let
there are T = {t1, t2, …, tn} n number of tasks with each
task ti has an expected time to compute tij on node 𝑀𝑗.
The entire task has expected time to compute on m
nodes of HDCS. Hence the generalized load-balancing
problem is to assign each task to one of the node 𝑀𝑗 so
that the loads placed on all nodes are as “balanced” as
possible [10] Let A(j) be the set of jobs assigned to node
𝑀𝑗; and Tj be the total time machine 𝑀𝑗 have to work to
finish all the task in A(j).

Hence Tj = ∑ ti ∈ xj tij ; for all task in A(j). This is
otherwise denoted as Lj and defined as load on node
Mj. The basic objective of load balancing is to minimize
make span, which is defined as maximum loads on any
node (T = maxj:1:m (Tj)) . Let xij correspond to each
pair (i,j) of node 𝑀𝑗 ∈ M and task ti ∈ T.

xij = 0; implies that task i not assign to node j.
xij = tij ; will indicate load of task i on node j.
For each task ti we need ∑ xij = tijm

j=1 ; for all task
 ti ∈ T.

The load on node Mj can be represented as Lj =

∑ xijn
i=1 , where xij = 0 whenever task ti ∉ (Aj). The load

balancing problem aims to find an assignment that
minimizes the maximum load. Let L be the load of a
HDCS with m nodes. Hence the generalized load
balancing problem on HDCS can be formulated as
Minimize L :

� xij = tij , for all ti ∈ T (1)
m

j=1

� xij ≤ L , for all Mj ∈ M (2)
n

i=1

xij ∈ �0, tij� , for all ti ∈ T, Mj ∈ M
xij = 0 , for all ti ∉ A(j)

Feasible assignments are one-to-one correspondence

with x satisfying the above constraints [1]. Hence an
optimal solution to this problem is the load 𝐿𝑖 on a
machine (corresponding assignment).

The problem of finding an assignment of minimum
makespan is NP-hard . The problem is therefore
untractable with number tasks or computing nodes

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1341
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

(processors) exceeds a few units. The solutions to load
balancing problem can be obtained using a dynamic
programming algorithm with time complexity O(nLm),
where L is the minimum makespan[10] The load
balancing problem has been evenly treated, in both the
fields of computer science and operation research. The
algorithm approaches used for load balancing problem
are roughly classified as (i) exact algorithms and (ii)
heuristic algorithms.

Queuing models are used as the key model for
performance analysis and optimization of parallel and
distributed system. The HDCS can be modeled as
M/M/m/n (Markovian arrivals, Markovian
distributed service times, m computing nodes as
server, and space for n ≥ m tasks in the system) multi-
server queuing system with m servers as computing
nodes. However, the heterogeneous multi-server
queuing systems are not adequately addressed in
research with respect to certain quality of service .The
HDCS is modeled as M/M/m/n queuing system with
node M1 is the fastest computing node and Mm is the
slowest computing node. Assume that service time
follow exponential distribution with service rate so that
𝜇1 > 𝜇2 > ⋯𝜇𝑚 , where 𝜇1 is the service rate of node
Mi. The arrivals of the tasks at the central server or
resource manager are modeled as Poisson with arrival
rate .

The tasks that are to be executed at a node are under
the control of local scheduler and the scheduling policy
of the node is responsible for the execution of the
assigned task. We have assumed FCFS policy is being
used at computing nodes, which can be modeled as
M/M/1 queuing system [1].

4 TASK MODEL AND ITERATIVE LOAD
BALANCING TECHNIQUES
4.1 TASK MODEL ON HDCS

In literature of distributed computing researchers
have used two different task models as (i) Task
graph(TG) or Task

interaction graph(TIG)[1], (ii) expected time to
compute(ETC) matrix[6].

The task graphs are both directed and undirected
weighted graph that represents process or task to be
executed, however majority of the models are not
representing any mathematical model for quantifying
task heterogeneity. In this paper we have use ETC
matrix representation of task that represents task
heterogeneity and machine heterogeneity. The tasks
are arriving from the different users or nodes to the
central scheduler or or serial scheduler have the
probability to be allocated to any of the m computing
nodes. Hence the tasks are characterized by expected
time to compute (ETC) on all m computing nodes, can
be represented as follows, In ETC matrix, the elements

along a row indicate the execution time of a given task
on different nodes[1], in particular tij represent
expected time to compute ith task on machine Mj .

TABLE 1
EXPECTED TIME TO COMPUTE (ETC) MATRIX

The ETC model presented are characterized by three
parameters (i) machine heterogeneity, (ii)task
heterogeneity and (iii)consistency. The task
heterogeneity can be represented with two categories
(i) consistent and (ii) inconsistent, here a consistent
ETC matrix the computing nodes are arranged in the
order of their processing capability or may be arranged
as decreasing order of FLOPS. In particular a node Mi
has a lower execution time than node Mj for task tk ,
then tki< tkj . Inconsistent ETC matrix is resulted in
practice, when HDCS includes different type of
machine architectures.(HPC clusters, Multi-core
processor based workstations, parallel computers,
work station with GPU units). In literature most of the
task execution times are uniformly distributed. A
consistent ETC matrix for ten tasks on five machines is
shown on table II, which is taken from . To generate
ETC matrix, we have used range base ETC generation
technique discussed and added one component as
arrival time of task. The arrival pattern of the task is
based on Poisson distribution. For the analysis of the
simulation results through the graph we have used
expected

completion time of task uniformly distributed {1,
500} time unit or seconds.[1]

TABLE 2
EXAMPLE OF CONSISTENT ETC MATRIX FOR 10 TASKS ON

FIVE MACHINES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1342
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2.2 ITERATIVE CENTRALIZED ALGORITHMS

We have used centralized load balancing algorithm,
a central node collects the load information from the
other computing nodes in HDCS. Central node
communicates the assimilated information to all
individual computing nodes, so that the nodes get
updated about the system state. This updated
information enables the nodes to decide whether to
send the task to other nodes or accept new task for
computation. The computing nodes depend on the
information available with central node for all
allocation decision .

GA based load balancing algorithm uses an iterative
structure with stopping criteria as maximum number
of iteration. We have also assumed that tasks are
independent and can be processed by any computing
node in distributed environment. For stability it is also
assumed that tasks must not be generated faster than
the HDCS can process as shown in equation 3[1].

∑ 𝜆𝑖 ≤ ∑ 𝜇𝑗𝑚

𝑗=1
𝑛
𝑖=1 (3)

4.3 CODING SCHEME FOR THE SOLUTION

Simulated annealing algorithms require a suitable
representation and evaluation mechanism. In this case
we have use a window structure of fixed length say k,
with integer value assigned to individual element of
the array of size k. That on each step k no of task to be
allocated to the computing node through simulated
annealing with a minimized value of makespan. Task is
assigned dynamically to the computing nodes on the
fly. At the time of allocation there may be a large
number of tasks are with central scheduler. A sliding

window technique is used to select those tasks only
that are in the window. The number of elements in the
window is fixed is equal to the size of window.

Figure 2. represents 10 tasks and their respective
allocation to five computing node. Figure 3 shows the
structure of allocation list, indicates the computing
node. We have assumed that, current work load as
dedicated tasks for each own node, so that the
calculation of makespan is carried out from the time
point when sliding window is selected[1].

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

M5 M3 M5 M3 M2 M2 M4 M4 M1 M1

Fig.2. allocation list of task to computing node

5 3 5 3 2 2 4 4 1 1

Fig.3. Allocation list

Figure 4. shows the makespan=73 for the chromosome in figure
3. with corresponding average utilization (AU) of fivecomputing
nodes..

Fig.4. Makespan of the system

4.4 GENETIC ALGORITHM

Genetic algorithms (GAs) are search methods based
on principles of natural selection and genetics. GAs
encode the decision variables of a search problem into
finite-length strings of alphabets of certain cardinality.
The strings which are candidate solutions to the search
problem are referred to as chromosomes, the alphabets
are referred to as genes and the values of genes are
called alleles. For example, in a problem such as the
traveling salesman problem, a chromosome represents
a route, and a gene may represent a city. In contrast to
traditional optimization techniques, GAs work with
coding of parameters, rather than the parameters
themselves. To evolve good solutions and to
implement natural selection, we need a measure for
distinguishing good solutions from bad solutions. The
measure could be an objective function that is a
mathematical model or a computer simulation, or it can
be a subjective function where humans choose better
solutions over worse ones. In essence, the fitness

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1343
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

measure
must

determine a candidate solution’s relative fitness, which
will subsequently be used by the GA to guide the
evolution of good solutions [4].

The proposed algorithm for task scheduling
considering load balancing is presented in figure 5.

 Fig.5. Pseudo code for genetic algorithm

5.4 CROSSOVER

It is generally used to exchange portions between
strings. The operator randomly chooses a locus and
exchanges the subsequences before and after that locus
between strings. Crossover is not always effected .The
invocation of the crossover depends on the probability
of the crossover [8].

Cut-
point

Parent1

Offsprin
g

Parent2

 Fig.6. (a) Crossover

6.4 MUTATION

While recombination operates on two or more
parental chromosomes, mutation locally but randomly
modifies a solution. Again, there are many variations of
mutation, but it usually involves one or more changes
being made to an individual’s trait or traits. In other
words, mutation performs a random walk in the
vicinity
of a
candidat
e solution [4].

 Before

 After

 Fig.7. (b) Mutation

7.4 FITNESS FUNCTION

After generating the population we have to perform
the selection operation. This operation can be
performed by using fitness function as shown below.

fitness
%makespan calculation
for k=1:size(ts,2)
 ind = find(ts_assign == k);
 if(length(ind)>0)
 L(k) = sum(ts(ind,k));
 else
 L(k) = 0;
 end
end
AU = L / max(L);
ms = max(L);

8.4 GENETIC FUNCTION
In our model, Genetic algorithm starts with

generating initial schedule TS randomly for 100 tasks.
A final allocation list for the tasks is obtained after 80
iteration. Tasks are allocated to the nodes and average
utilization is calculated for those 100 tasks before
selecting a next 100 tasks from the set of waiting tasks.
The algorithm GA_Function called for maximum (n/
WIN_SIZE) times to allocate n tasks to the computing
nodes.

GA_function ()
WIN_SIZE = 100; %tasks which process at each step
m = size(Tasks,2); %cpu size
n = size(Tasks,1); %tasks amount
makspan(1) = 0;
pop_size = 100; %population size
max_itr = 80;
for i=1:n/WIN_SIZE %execute GA for each

Win_size tasks
 ts = Tasks((i-1)*WIN_SIZE+1:(i)*WIN_SIZE,:);

%seperate each WIN_SIZE amount of tasks
 %initialize population
 for j=1:pop_size
 pops(j,:) = randi([1 m],WIN_SIZE,1); % first

assign randomly
 end
for itr=1:max_itr

initialise population
do{
crossover
random mutation
selection
}while(stopping conditions not met)
return best individual

5 3 5 3 2 2 4 4 1 1

5 3 5 3 2 2 4 1 1 4

3 3 5 5 2 2 4 1 1 4

3 3 5 5 2 2 4 1 1 4

3 3 4 5 2 2 4 1 1 4

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1344
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 %cross over
 N = pop_size + 1;
 for j=1:round(pop_size*.8/2)
 %select two parents
 n1 = randi([1 pop_size]);
 n2 = randi([1 pop_size]);
 %select cross-over point
 cp = randi([1 size(pops,2)]);
 %first child
 pops(N,1:cp) = pops(n1,1:cp);
 pops(N,cp+1:end) = pops(n2,cp+1:end);
 %first child
 pops(N+1,1:cp) = pops(n2,1:cp);
 pops(N+1,cp+1:end) = pops(n1,cp+1:end);
 N = N + 2;
 end
 %mutation
 for j=pop_size+1:size(pops,1)
 for f=1:(size(pops,2)*.2)

 pops(j,f) = randi([1 m]);
 end
 end
 %makspan calculation(ms)
 for j=1:pop_size
 ts_assign = pops(j,:);
 fitness;
 MS(j) = ms;
 au(j) = mean(AU);
 end
 %selectionا
 [v,ind] = sort(MS);
 temp = pops(ind(1:pop_size),:);
 clear pops
 pops = temp;
 clear temp
 end
 %final makspan calculation(ms) for this part
 ts_assign = pops(1,:);
 fitness;
 if(i==1)
 makspan(i) = ms;
 else
 makspan(i) = makspan(i-1) + ms;
 end
 Au(i) = mean(AU);

Common approaches used as the stopping criteria in

Genetic algorithm (GA) are, (i) one may use a given
number of iteration, or (ii) a time limit, or (iii) a given
number of iteration without an improvement of the
objective function value, (iv) value of the objective
function limit as set by the user[1]. We have used a
fixed number of iteration proportional to number of
task to be schedule on computing nodes. We have use
Matlab to design our simulation programs. The

experiment was conducted with n=1000 tasks on m=50
computing nodes. The simulation results are compared
with simulated annealing algorithm.

Fig.8. Completion Time of 1000 tasks on

Fig.9. Average Processor Utilization

5 CONCLUSION AND FUTURE WORK

Scheduling in distributed operating systems has a
significant role in overall system performance and
throughput. The scheduling in distributed systems is
known as an NP-complete problem even in the best
conditions. We have presented and evaluated new GA-
Based method to solve this problem. This algorithm
considers multi objectives in its solution evaluation and
solves the scheduling problem in a way that
simultaneously minimizes maxspan and
communication cost, and maximizes average processor
utilization and load-balance. Most existing approaches

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1345
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

tend to focus on one of the objectives.
The Figure: 4.2 show that the total time taken for

two
algorithms increased linearly as the number of tasks

was increased. It was also noted that the GA performed
better than the SA algorithm. When comparing the
results of the GA and the SA algorithm, one can
observe that the gap between these two curves was
widening as the number of tasks was increased. This
shows that the GA actually reduced the total
completion time by a considerable amount (greater
speedup) in comparison to the SA algorithm as the
number of tasks increased. This also indicates reliable
performance of the GA_loadbalancing when the
number of tasks increases.

The GA-based load balancing algorithm shows
better performance to that of SA in both average
processor utilization and completion time or makespan
.

Ant Colony algorithm have been proposed over the
years for solving static and dynamic load balancing
problems on

distributed system. The coding method introduced
in this paper can be used to design a Ant Colony
algorithm for dynamic loadbalancing in HDCS.
REFERENCES

[1] Sahoo, B., Jena S.K., and Mahapatra, SX,
“Simulated Annealing based Heuristic Approach for
Dynamic Load Balancing Problem on Heterogeneous
Distributed Computing System”, (2012).

[2] Page, A. J., Naughton T. J, “Dynamic task
scheduling using genetic algorithms for heterogeneous
distributed computing”, (2005).

[3] Daoud, M. I., Kharma, N, “An Efficient Genetic
Algorithm for Task Scheduling in Heterogeneous
Distributed Computing Systems”, (2006).

[4] Gonnade(Kohale), P. G., Bodkhe, S, “Genetic
Algorithm for Task Scheduling in Distributed
Heterogeneous System”, (2012).

[5] Sahoo, B., Jena S.K., and Mahapatra, S, “A
Genetic Algorithm Based Dynamic Load Balancing
Scheme for Heterogeneous Distributed Systems”,
(2008).

[6] Boxma, O., Koole, G., and Liu, Z, “Queueing-
theoretic solution methods for models of parallel and
distributed systems”, (1994).

[7] Mortazavi, S.S., Rahmani, A.M, “Two new
biasing load balancing algorithms in distributed
systems”, (2009).

[8] Nikravan, M, “A Genetic Algorithm-Based
Approach for Process Scheduling In Distributed
Operating Systems”, (2012).

[9] Ghosh, S, “Distributed systems: an algorithmic
approach”, (2006).

[10] Kleinberg, J., Tardos, E, “Algorithm Design”,
(2006).

[11] Wu, J, “Distributed system design”, (1999).
[12] Hwang, k.k., Fox,G.C., and Dongarra, J.J,

“Distributed and Cloud Computing: From Parallel
Processing to the Internet of Things”, (2012).

IJSER

http://www.ijser.org/

